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Exercise 16

Solve the Lamb (1904) problem in geophysics that satisfies the Helmholtz equation in an infinite

elastic half-space
2
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where w is the frequency and cs is the shear wave speed.
At the surface of the half-space (z = 0), the boundary condition relating the surface stress to the
impulsive point load distribution is given by
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where p is one of the Lamé constants, P is a constant, and

= —Pj(x) atz=0,

u(z,z) >0 asz— oofor —oo <z < oo.

Show that the solution in terms of polar coordinates is
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Solution

The PDE is defined for —oo < 2 < 00, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

Flu(z,2)} =U(k, z) = \/12? /OO e~ hy(z, 2) du,

which means the partial derivatives of u with respect to z and z transform as follows.
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Take the Fourier transform of both sides of the PDE.
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The Fourier transform is a linear operator.
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Transform the derivatives with the relations above.
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Move the terms with U to the right side and factor.
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The solution to this second-order ODE can be written in terms of exponentials.
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To determine the constants, A(k) and B(k), we have to make use of the boundary conditions.
Take the Fourier transform of both sides of them.
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In order for condition (1) to be satisfied, we require that A(k) = 0.
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To make use of condition (2), differentiate U(k, z) with respect to z.
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Evaluating this at z = 0, we find that
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Hence, the solution for U(k, z) is
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To change back to u(z, z), we have to take the inverse Fourier transform of U(k, z). It is defined as

u(z,z) = FHU(k, 2) W/ U(k, z)e™*= dk.

Therefore,
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