## Exercise 16

Solve the Lamb (1904) problem in geophysics that satisfies the Helmholtz equation in an infinite elastic half-space

$$
u_{x x}+u_{z z}+\frac{\omega^{2}}{c_{2}^{2}} u=0, \quad-\infty<x<\infty, \quad z>0
$$

where $\omega$ is the frequency and $c_{2}$ is the shear wave speed.
At the surface of the half-space $(z=0)$, the boundary condition relating the surface stress to the impulsive point load distribution is given by

$$
\mu \frac{\partial u}{\partial z}=-P \delta(x) \quad \text { at } z=0,
$$

where $\mu$ is one of the Lamé constants, $P$ is a constant, and

$$
u(x, z) \rightarrow 0 \quad \text { as } z \rightarrow \infty \text { for }-\infty<x<\infty .
$$

Show that the solution in terms of polar coordinates is

$$
\begin{aligned}
u(x, z) & =\frac{P}{2 i \mu} H_{0}^{(2)}\left(\frac{\omega r}{c_{2}}\right) \\
& \sim \frac{P}{2 i \mu}\left(\frac{2 c_{2}}{\pi \omega r}\right)^{\frac{1}{2}} \exp \left(\frac{\pi i}{4}-\frac{i \omega r}{c_{2}}\right) \quad \text { for } \omega r \gg c_{2} .
\end{aligned}
$$

## Solution

The PDE is defined for $-\infty<x<\infty$, so we can apply the Fourier transform to solve it. We define the Fourier transform here as

$$
\mathcal{F}\{u(x, z)\}=U(k, z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} u(x, z) d x
$$

which means the partial derivatives of $u$ with respect to $x$ and $z$ transform as follows.

$$
\begin{aligned}
& \mathcal{F}\left\{\frac{\partial^{n} u}{\partial x^{n}}\right\}=(i k)^{n} U(k, z) \\
& \mathcal{F}\left\{\frac{\partial^{n} u}{\partial z^{n}}\right\}=\frac{d^{n} U}{d z^{n}}
\end{aligned}
$$

Take the Fourier transform of both sides of the PDE.

$$
\mathcal{F}\left\{u_{x x}+u_{z z}+\frac{\omega^{2}}{c_{2}^{2}} u\right\}=\mathcal{F}\{0\}
$$

The Fourier transform is a linear operator.

$$
\mathcal{F}\left\{u_{x x}\right\}+\mathcal{F}\left\{u_{z z}\right\}+\mathcal{F}\left\{\frac{\omega^{2}}{c_{2}^{2}} u\right\}=0
$$

Transform the derivatives with the relations above.

$$
(i k)^{2} U+\frac{d^{2} U}{d z^{2}}+\frac{\omega^{2}}{c_{2}^{2}} U=0
$$

Move the terms with $U$ to the right side and factor.

$$
\frac{d^{2} U}{d z^{2}}=\left(k^{2}-\frac{\omega^{2}}{c_{2}^{2}}\right) U
$$

The solution to this second-order ODE can be written in terms of exponentials.

$$
U(k, z)=A(k) e^{z \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}}+B(k) e^{-z \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}}
$$

To determine the constants, $A(k)$ and $B(k)$, we have to make use of the boundary conditions. Take the Fourier transform of both sides of them.

$$
\begin{align*}
& \lim _{z \rightarrow \infty} u(x, z)=0 \rightarrow \mathcal{F}\left\{\lim _{z \rightarrow \infty} u(x, z)\right\}=\mathcal{F}\{0\} \\
& \lim _{z \rightarrow \infty} \mathcal{F}\{u(x, z)\}=0 \\
& \lim _{z \rightarrow \infty} U(k, z)=0  \tag{1}\\
&\left.\mu \frac{\partial u}{\partial z}\right|_{z=0}=-P \delta(x) \rightarrow \mathcal{F}\left\{\left.\mu \frac{\partial u}{\partial z}\right|_{z=0}\right\}=\mathcal{F}\{-P \delta(x)\} \\
& \mu \mathcal{F}\left\{\left.\frac{\partial u}{\partial z}\right|_{z=0}\right\}=\frac{-P}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i k x} \delta(x) d x \\
&\left.\mu \frac{d U}{d z}\right|_{z=0}=-\frac{P}{\sqrt{2 \pi}} \tag{2}
\end{align*}
$$

In order for condition (1) to be satisfied, we require that $A(k)=0$.

$$
U(k, z)=B(k) e^{-z \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}}
$$

To make use of condition (2), differentiate $U(k, z)$ with respect to $z$.

$$
\frac{d U}{d z}=-B(k) \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}} e^{-z \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}}
$$

Evaluating this at $z=0$, we find that

$$
\left.\frac{d U}{d z}\right|_{z=0}=-B(k) \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}=-\frac{P}{\mu \sqrt{2 \pi}} \quad \rightarrow \quad B(k)=\frac{P}{\mu \sqrt{2 \pi} \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}} .
$$

Hence, the solution for $U(k, z)$ is

$$
U(k, z)=\frac{P}{\mu \sqrt{2 \pi} \sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}} e^{-\sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}} z} .
$$

To change back to $u(x, z)$, we have to take the inverse Fourier transform of $U(k, z)$. It is defined as

$$
u(x, z)=\mathcal{F}^{-1}\{U(k, z)\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} U(k, z) e^{i k z} d k
$$

Therefore,

$$
u(x, z)=\frac{P}{2 \pi \mu} \int_{-\infty}^{\infty} \frac{1}{\sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}}} e^{-\sqrt{k^{2}-\frac{\omega^{2}}{c_{2}^{2}}} z} e^{i k x} d k
$$

